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SOME EASY "t"-STATISTICS

Paul S. Horn

ABSTRACT

This paper explores the use of '"t''-statistics based on two or four
order statistics. The functions of the order statistics which are
used to define the "t''-statistics are the hinges. The hinges are
approximately the quartiles and are either exact order statistics
or the means of two adjacent order statistics. Two "t'"-statistics
based on the hinges are examined and compared to other t-statistics,

including Student's t , using various criteria.

KEY WORDS: t-statistics, robustness, order statistics, quartiles.
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1. INTRODUCTION

The estimation of the location of a sample by a point value, or
by a confidence interval, has long been of major concern for statis-
ticians. It is well known that, if the underlying distribution of
the sample in question is Gaussian with unknown variance, then the
intervals based on Student's t statistics are the best that can
be achieved. However, when Gaussianity is not the case, as meny who
work with real data believe, Student's t intervals can be inappro-
priate. If the underlying distribution of the sample is heavier-
tailed than the Gaussian then the Studnet's t intervals tend to
be very long, i.e., conservative (e.g., Benjamini 1980). So, if the
sample has more values out in the far ends of the tails than would
usually be expected from e Geussian sample of that size, confidence
intervals based on Student's t will not 5e as preclse as they
could be if they were otherwise based.

A robust estimate performs well in spite of deviations from
ideal behavior, particularly if there are some values in the far
ends of the tails. There are many robust estimates of location and

spread, as can be seen in The Princeton Robustness Study (Bickel et‘

al. 1972), EDA (Tukey 1977), and Data Analysis and Regression

(Mosteller and Tukey 1977). In this study alternative "t"-statis-
tics to Student's t will be formed using a variety of location and

spread estimates. Some of these "t"-statistics are not only robust,

but are also easy to compute.
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Once results are collected concerning the "t"-statistics the

next problem is how to interpret them. The notion of criteria for
quantifying the performances of the resulting intervals is examined.
Traditionally, the Expected Confidence Interval Length, or ECIL, has
been emphasized. ECIL was used by both Gross and Kafadar because of
its intuitive appeal as a measure of performance of a confidence pro-
cedure.

In order to examine other criteria, large classes of criteria
are defined along the lines of conservatism of approach. ECIL,
then being Just a member of & class, is no longer viewed as the

principal approach, but one of many.

2. EASILY COMPUTED "t"-STATISTICS

2.1 O~"er Statistics, Depths, and Hinges

Given n dats points we can order them so that xl < X, £...8 xn,
where Xy will be referred to as the 1th order statistic. We will
define the depth of an order statistic as the position of the order
statistic with respect to either the minimum, xl, or the maximum,
X whichever is closer. Thus, the order statistics, x, &and

i
both have depth equal to 1.

*n-isl
A given depth defines two order statistics: <that order statis-

tic whose depth is with respect to the minimum and that whose depth

is with respect to the maximum. If the given depth is not an integer

but a half-integer, then the corresponding order statistic is not a
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single ordered data value, but an average of two ordered data values

of adjacent depths. So, for example, if we want the two order sta-
tistics whose depth is 1 1/2 then the smaller one is (x1+x2)/2,
and the larger one is (xn_l+xn)/2. The now define the hinge-depth as
([(n+1)/2]+#1)/2 where [ ] is the greatest integer function. Note
that this defines two hinges; a lower hinge, X, say, and an upper ]
hinge, Xy where Xy < Xy by construction. The hinge-depths are
approximately n/h  for large n, so that hinges are similur to
quartiles.

Based on these order statistics, Xy, and Xy the natural
estimate of location is the mid-hinge, or (xL+x.U)/2. Similarly, a
natural estimate of the spread of the data is the hinge-spread, or
XX - We can now form a "t"-statistic from Just two (or four)
such order statistics, namely the hinge-t: (xL+xU)/2(xU-xL).

We can define other "hinge'"'s and thus other "hinge"-spreads and

"hinge"-t's. Define the hinge(-)-depth as the hinge-depth minus 1/2.

This will yield the hinge(—)-t: (xL_+xU_)/2(xU_-xL_) with the obvious
definitions. Now for a given sample size, either the hinges or the
hinge(-)'s will be exact order statistics, while the others will be
averages of two adjacent order statisties.

Similarly, let us define hinge(--) as those order statistics
whose depth is the hinge-depth -1, and the hinge(+) as those order
statistics whose depth is the hinge-depth +1/2. So, there are now

four "hinges" to be considered, and thus, four "hinge"-spreads.
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2.2 Sampling Situations

To assess how well an estimator performs one must examine it
under a variety of situations. 1In this study we shall examine sev-
eral estimators and "t"-statistics with various underlying dictri-
butions. To keep with tradition, one of these distributions will be
the standard Gaussian, but since it is probably rare that real datsa
are distributed in this way, the other distributions used will have
heavier tails than the Gaussian.

Since we believe that real data tend to be Gaussian in the mid-
dle, then the family defined by Z/Uk, where Z has a Gaussian
(0,1) distribution, U is uniformly distributed over the unit
interval and independent of Z, and 0 sk 51, 1is a useful family
for the pruposes just discussed. This family will be referred t& as
the Slash family of distributions (Rogers and Tukey 1972).

I- this study we will look at four members of this family. The
first was already mentioned, that is the case k = 0, or the stan-
dard Gaussian case. If we now think of k = 1/v where 1 Sv<@®
then Z/Uk is Gaussian in the middle, but has tails that behave like
the Student's t-distribution with v degrees of freedom (Rogers and
Tukey 1972). The other three cases that will be used are v=1,2
and 3, yielding distributions that are Gaussian in the middle but
have the tail behavior of the t-distribution on 1, 2 and 3 degrees

of freedom respectively. These distributions will be referred to as

the Slash, Slasq, and Slacu respectively.
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2.3 The "Hinge"-spreads

As described previously we have four "hinges": hinge(--),
hinge(-), hinge(+), and the hinge itself. Hence there are four
possible "hinge"-spreads, each of which could be used as the denom-
inator of a "t"-statistic: hinpe{-~)-spread, hinpe(-)-spread,
hinge(+)-spread, and hinge-spread. At this stage we would like to
examine these "hinge'-spreads more closely, and, if possible, narrow
our focus to the more sensible of these potential denominators.
Hopefully, we can focus on two such "hinge"-spreads: one based on
two order statistics and one based on four.

If we let X = xl,...,xn be a sample of n data points from
a particular distribution then we are interested in comparing the
"hinge"-spreads using some appropriate measure of performance. A
reasonable masure of performance of hs(X) is its coefficient of
variastion, or CV(hs(X)) = Jar(hs(X))/E(hs(X)). This quantity has
the desirable property of being dimensionless.

In order to assess the "hinge'-spreads we have generated, for
each sample size, 1000 samples from each of the four distributions
mentioned earlier: Gaussian, Slacu, Slasq, and Slash. For each
situat n (distribution, sample size) we compute the coefficient of
variation for each "hinge"-spread. Since we are comparing these
spreads, we divide each coefficient of variation by the minimum
coefficient of variation of the four spreads in each situation.

The results are presented in Table 1, where the sample sizes exam-

ined were 5 through 10 inclusive and 20.
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As was to be expected, hinge(--)-spread is extremely sensitive %
to the heavy tails of the Slasq and Slash distributions, especially

with small sample sizes. Hinge(+)-spread has the worst performance

of the "hinge"-spreads in the Gaussian case while not doing much
better than the hinge-spread for the heavy-tailed cases. Some people
could argue that Slash is too heavy-tailed a distribution to con-
sider. If we drop Slash as a distribution to be considered, the
above remarks concerning hinge(--)-spread and hinge(+)-spread are
still valid when Slasq is the most heavy-tailed distribution used.

Hinge-spread and hinge(-)-spread came out the best compromises
and so will be the focus of the more detailed study to follow. These
two "hinge"-spreads have the advantage of allowing us to choose, for
each sample size, a "hinge"-spread based on either two or four order
statistics.

To simplify matters further define the pivot as either the hinge
or hinge(-), whichever is an exact order statistic, and the bi-pivot
as that which is not an exact order statistic. Thus, the depth of
the pivot will always be an integer, while that of the bi-pivot will
always be a half-integer. We can similarly define the pivot-t as
the mid-pivot/pivot-spread, and the bi-pivot-t analogously. So,
for example, if we have 5 data points, with the hinpe depth = 2,

the pivot-t would be the hinge-t and the bi-pivot-t would be the

hinge{-~)-t. If we have 7 data points, with the hinge depth = 2.5,

the reverse is true. 8o for each sample size then there will be a

't"-statistic based on two order statistics and another based on four.
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2.4 Five "t"-statistics Examined

F In this study five "t"-statisties, each of the form

location estimate/spread estimate, and the confidence intervals for
location derived from them will be examined and compared. Two of
these are the hinge-t and the hinge(-)-t, equivalently the pivot-t
and bi-pivot-t, with the correspondence depending on the sample size.
The first "t"-statistic that will be compared with these will be the
traditional Student's t, J/nX/s, where x is the sample mean, s is
the sample standard deviation, and n 1is the sample size.

The other two "t"-statistics examined are of the more robust

type than is Student's t. The first such "t"-statistic is based

! on the median, which will be referred to as median-t, or med-t.

; Med-t .s defined as x/2-MAD, where % 1is the sample median and
i MAD 1is the median absclute deviation from the median, or medlxi—il.
“ The final such "t"-statistic is based on the bisquare weight func-

] tion, which will be called the biweight-t, or biwt-t. Biwt~t is

| defined as the c—biweight/sbi, where the biweight x*==Zwixi/Zwi,

L where

(l-uf)2 ir wo <1
i i

; 0 glse

r" uis (xi—x*)/cs, S 1is an estimate of spread, and c¢ 1is a constant.
y Here we will take S equal to the MAD and ¢ = 9. Since the bi-
weight is an iterative procedure and we wish to keep things simple

we will only look at one-step biweights starting at the median, i.e.,
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the initial x* will be taken to be x. So, to be more specific

in our notation, the biweight to be examined is a one step ¢ = 9
biweight, or a w9-biweight.

The spread estimate,
2 ! 112
= L (x-x
Spi (x-x)

indicates summation over those x data points for which u2 s1

Spic 18 defined by
1

(l—u2)h/[i'(l-u2)][-l+ i (l-u2)(l—5u2)] where L

(Mosteller and 'lukey 197(). 'Thus, the biweight "{"-slalistic will

be referred to as the w9-biweight-t or, the w9-biwt-t.

3. THE CONSERVAT1VE CONFIDENCL INTERVALS

3.1 Constructicn of Confidence Intervals

Since, for a given "t"-statistiec, a two-sided 100(1-a)%
confidence interval has the form (location estimate) % (spread
estimate)-(100(1-a/2)% point of location estimate/spread estimate),
the problem of computing a confidence interval boils down to find-
ing the appropriate 100(1-a/2)% point. Thus, for each sampling
situation (fixed sample size and distribution) and "t"-statistic
the appropriate 97.5% point will be computed. In this study we
will coﬁcentrate our efforts on two-sided 95% confidence inter-
vals, though percent points for other levels are included in the
final section.

In order to compute these percent points we take advantage of
the fact that the distributions in question are from the Slash fam-

ily, i.e., distributions of random variables of the form 2Z/Y,

where 2 1is distributed as a unit Gaussian and Y 1is positive and




independent of 2. Thus the tail probabilities of the "t"-statis-
tics can be computed using a Monte Carlo location and scale swindle
(cf. Simon 1975). The percent points are then obtained by doing a

bisection on these probabilities.

3.2 Conservative Confidence Intervals

For a given sampling situation and "t"-statistie, it is assumed
that the user will know everything except the underlying distribution
of the data. While we wish tc be robust we should not be foolhardy.
Hence, in order to be conservative, we will use the maximum percent
point across the four distributions in each case. The use of these
conservative percent points is to insure that the corresponding in-
tervals are not less than level 100(1-a)%.

So, for each sampling situation and "t"-statistic the conserva-
tive two-sided 95% confidence interval is as follows: (location
estimate for "t" from given saﬁpling situation) % (spread estimate
of "™t" from same sample) - (conservative 97.5% point of the "t"-

statistic).

k. ASSESSING PERFORMANCE

4.1 Deciding among the "t"'s
We have five "t"-statistics: Student's-t, median-t,
w9-biweight-t, hinge(-)-t, and hinge-t. Now that we have their

respective conservative 97.5% points we can construct conservative

95% confidence intervals. The question arises: How do we decide
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among these five "t"-statistics? Clearly some criterion, or measure-
ment of performance is needed. Once we have these criteria we can
measure the performance of each "t" and eventually be able to com-
pare the different '"t"'s by some measure of efficiency based on the
criteria. This aspect will be discussed later. }

Given that our intervals will cover the true value 95% of the
time it would be desirable that their lengths be as shor t as possible.
Thus it seems logical that a measure of performaQFe of a confidence
procedure based on "t" would be some measure of the lengths of the
confidence intervals given by that procedure.

We will be concerned with the performance of a confidence pro-
cedure in a specific situation. By situation we mean a fixed under-
lying distribution and sample size upon which each interval is based.
So let Ll""’Ln be a sample of n confidence interval lengths from
a procedure based on "t" under a specific situation. Let Fn be
the empirical distribution function of the Li's which we will now
take to be ordered. Since all that we required of our criterion in
the previous paragraph was that it be some function of the confidence

interval lengths we will call a functional C a criterion if C(Fn)

is nonconstant.

The class of such functionals is a very borad one because 4if-
ferent investigative aims may require different criteria. A very
conservative criteria might weigh heavily the longer interval lengths.
In the other direction, a criterion could downweight the unusually

long interval lengths. Clearly some criteria are more reasonable
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than others, just as some investigators are more reasonable than

others.

The class of criteria contains a large subclass from which most
investigators would be satisfied to choose. This isithc clacs of
functionals that yield polynomials in the Li's. Specifically, if
P is a criterion then P € Pc’ the class of polynomial criteria,
if P(Fn) = nlrz]'+--- +nuL2“.

The class of polynomial criteria contains a very important
class of functionals. That is, Pc contains the class of function-
als that is location and scale invariant. Thus all of the usual
location estimates (mean, median, mid-hinge) are in the class Pc.

It should be noted that Pc contains a lot of other function-
als which may seem like reasonable criteria but are not location and
scale invariant. A very conservative, perhaps foolish, investigator
may use the Expected (lengthe) as a criterion (i.e., C(Fn) =%:%1L§).

i=
This is very conservative because it will heavily penalize a pro-
cedure that yields eveﬁ a slightly long-tailed distribution of inter-
val lengths. Since we are neither overly conservative nor overly
risky (e.g., C(Fn) = VEE'+-'- +v&;;), we choose to concentrate on
the class of criteria such that b1_=--- =bn==l. It so happens that
this is the class of criteria that are location and scale invariant.

Now that we have narrowed our class of criteria to the subclass
containing C, such that C(Fn) = alLl-k... +anLn, we should fur-

ther ask what choices of the ai's would yield reasonable criteria.

Since all the Li's are 20 a criterion that examines gaps between
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the Li's weould have little advantage over one that looked at the
Li's themselves. Thus, we will restrict our attention to criteria
such that A, 20 for all 1i. Turther, since we will often comparc

n
among procedures we might as well require that Za, =1.

i=1 1

What had started out as a huge class of criteria, albteit many of
which were foolish, has now been reduced to the class of functionals
that yield convex combinations of the ordered interval lengths.

While it would seem that we are restricting ourselves to the subclass
of location and scale invariant functionals it must be emphasized

that these invariance properties came as a result of the restrictions
placed on the bi’s, and not from any a priori desirability for loca-
tion and scale invariance.

It must also be emphasized that the main purpose of these cri-
teria is not necessarily to estimate the location of the distribution
length_. All of the criteria in Pc, say, however unrcaconable,
measure some aspect of the interval lengths; the location parameter
may be just one aspect that the investigator may be interested in.
Like the invariance properties, point estimation of the location of
the distribution of the confidence interval lengths may be achieved

by a criterion, but this is due to the restrictions on the ai's and

bi's and not necessarily on an a priori desirability to estimate

location.
4.2 ECIL
Gross (1973) and Kafadar (1979) used as their eritorion for men-

suring the performance of "t"-statistics the ECIL, or the DExpected
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Confidence Interval Length. This is the obvious measure of perform-
ance with which to examine the behavior of the intervals. As in the
previous section, ECIL should be thought of as an assessment of the
performance of the confidence interval procedure based on "t", and

not as an estimate of the location of the sample of the confidence

interval lengths based on that "t",

ECIL does, on the surface, seem a reasonable measure of perform-
ance of a confidencé procedure, giving equal weight to each interval
length. However, while the main purpose of ECIL is not in trying
to estimate the location of the distribution of confidence interval
lengths, and thus not explicitly calling for a more robust procedure,
the spirit of robustness need not be totally ignored.

If we judge the desirability of a confidence procedure by exam- !
ining its ECIL, we may make decisions because of a particularly vio-

lent behavior in the tail of the distribution of the lengths. Surely

ve want to be aware of whether a confidence procedure yields interval
lengths that are drastically skewed toward high values. Yet, we may
be over-penalizing a confidence procedure because a small percentage
of its interval lengths are unusually long. It would seem then that
a reasonable measure of performance could be based on a truncated
ECIL: the expected confidence interval length of the smallest B%,

or the B%-ECIL.

4.3 PBR-ECIL
What are good choices of B8 in light of the previous discussion?

We are trying to maintain a balancing act. We want highly skewed,




heavy-tailed confidence procedures to be noticed, yet, if this unde-

sirable behavior occurs only quite occasionally, we do not wish to
penalize an otherwise sound confidence procedure. 1In light of the
first part of the balance, we could be overly risky if we used a
less than, say, 90. For example, if a confidence procedure yields
interval lengths whose top 20% are unusually long then we would
probably want our criterion to reflect this fact. Yet, we may be
willing to let our criterion ignore the top 10%. If we use 90%-ECIL
we still have a reasonable handle on how violently the intervals
behave while not allowing the tail of their distribution to exert too
much influence.

One could argue that since we have been conservative in protect-
ing ourselves vis-a-vis the intervals themselves, why not continue in
this vein with rega-d to their assegsment, i.e., use ECIL. If we
choose we can be even more extreme than ECIL. We could take a
weighted average of the interval lenpgths giving the longer lengths
more weight. The question boils down to how much we wish the tail
of the distribution of the interval lengths to influence our Judg-
ment of the corresponding confidence procedure. Averaging the first

90% of the interval lengths seems one reasonable choice.

4.4 p%-CIL

Another criterion for pertormance of a confidence procedure

would be some measure of how stretch-tailed is the distribution of

interval lengths. Precisely, at what point do we have BZ of the
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interval lengths lying to the left, i.e., we could use the PB-per-
centile of the confidence interval lengths, or B%-CIL. As with
P%-ECIL we must keep in mind thul we are trying to measure perform-
ance based on the behavior of the interval lengths. Again, if §

is too small we would be using a criteria that might ignore too much
of the tail of the distribution of the interval lengths, while a B
that is very large might keep us from using a procedure which is
usually pretty good. For the above reasons, as with E%-ECIL,

B =90, or 90%-CIL appears to he a good criterion for the perform-

ance of a confidence procedure.

4.5 90%-ECIL vs. 90%-CIL

It is clear that the 90%-ECIL and the 90%-CIL measure dif-
ferent aspects of the confidence procedure, though both appe;r to be
valid criteria. A lorical question is: When do the two criteria
differ drastically, in the sense that they disagree as to which of

two confidence procedures is preferable? In Figure A, the graphs

indicate the underlying densities of interval lengths for Cl, con-
fidence procedure 1, and similarly for C2, confidence procedure 2.
The density for Cl has o longer tail than that of C2 7o the

90%-CIL criterion will favor the second confidence procedure. But,
the 90%-ECIL for Cl is less than that of C,, thus implying that

the first confidence procedure ig better.

The differences need not be so drastic. Cl muy be 85% effi-

cient (in some sense) with respect to 02 using 90%-CIL and 95%




efficient using 90%-ECIL. Our action in either case would be to

report both resulls. Oune might objecl here and vehemently urpgue for
a single measure of performance so as to be able to make statements
like: "Procedure Cl is T78% as efficient as procedure C2 using
eriterion (blank)."” If one must choose between the two criteria we
recommend using 90%-ECIL over 90%-CIL because of situations that
might occur as in Figure A where we would not like Cl penalized

so much only because its tail is a bit stretched.

L.6 Tetra—éfficiencies

We can define the FBJ-ECIL (distribution) - (relative) effici-
ency as the inverse squared ratio of the E%-ECIL for each "t"-
statistic to the best such p%-ECIL among all five "t"-statistics.
So, for example, in the Gaussian case we have, say, the 90%-ECIL
for e o "t". We can then define the 907-ECTL Goussian cfficicncy

of "t" as:
minimum{Gaussian 90%-ECIL for all "t"'s}/{Gaussian 90%-ECIL for "t"J.

We can repeat this for Slacu, Slasq, and Slash yielding four effici-
encies for each "t".

In the previous discussion it was pointed out that given a cri-
terion for measuring performance we would then wish to make state-
ments as to the efficiencies of the confidence procedurcs. We have

five "t"-statistics with their respective conservative 97.5% points.

For each "t" we draw samples from each of the four distributions
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mentioned earlier. This yields for each distribution and "t"-sta-
tistic a sample of confidence interval lenglhs. Also, there are
four criterion- (distribution)- (relative) efficiencies for each
"t"_statistic, one for each of the four distributions. As with
Kafadar's tri-efficiency we can define the (relative) tetra-effici-
ency of "t" as the minimum {(distribution) -efficiency of "t"J.
Each (distribution)-efficiency answers the question: "If the
underlying distribution were in fact (distribution) how well would
"t" do relative to the best of the other four "t"'s? The tetra-
efficiency then is a response to the fact that in practice we never
know the underlying distribution. Thus, to be conservative, we take
for each "t" its minimum (distribution)-efficiency. Exhibits 2
and 3 give the totra-efficiencies for the B%-FCIL and the B%-CIL
criteria respectively, for P = 50,80,90,95,99, and 100. (Notice
that Slasq pever provides the extreme, and that Slacu does only

once, at n =20, [ = 100%.)
4.7 Comments

The results indicate that all of the hinge-"t"'s outperform,
in terms of tetra-efficiency, Student's t and Median-t for sample
sizes between U4 and 20. Aside from drops of tetra-efficiency for
hinge-t at sample size =5 (pivot-t) and hinge(-)-t at sample
size =6 (bi-pivot-t) the hinge-"t"'s stand up well to the
biweight-t for sample sizes =9.

As might be expected, hinge-t  and hinge(-)-t  outperform euch

other, by and large, according to whichever is the bi-pivot-t for

that particular sample size. Again, the exception is at sample size
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1 =6 where pivot-t outperforms bi-pivot-t by almost 17%.

It ic clear from the above results that the relative perform-
ances of these "t"-statistics are intimately related to the size
of the sample in question. As previously noted there seems to be
some strange behavior among the hinge-"t"'s for sample sizes be- %
tween 4 and G, e.g., the large drop in tetra-efficiency for the
bi-pivot-t at sample size =6. This is probably due to the fact

; that this is the largest sample size for which any of the hinge-"t"'s

uses the extreme values of the sample.

In light of previous arguments, one could argue that in using

t Slash as a fourth distribution for such sample sizes one may be
over-penalizing some of the confidence procedures. It could be
argued that it is rare that such contamination is found and we may

not want to protect against it especially in small sample sizes. If

|

E Slash is omitted as a fourth corner for sample sizes L through T,
|

what were tetra~cfficienciecs are now tri-efficiencies. Exhibits k
and 5 give the tri-efficiencies for E%-ECIL and B%-CIL recpec-

tively. The major differences in these exhibits are the performances

4

|

)

| of Student's t and the hinge-"t"'s, especially hinge(-)-t.

t If one adheres to 90%-ECIL. as the preferred criterion then

| Student's t 1is the relative best "t"-statistic for sample sizes

b

i L through 7. If, on the other hand, one uses ECIL or 90%-CIL
then the bi-pivot-t statistic is the best performer for sample

sizes U through 6 (hinge-t for sample size 4, hinge(-)-t for sam-

ple sizes S and 6).

Aakih
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While the biweight-t is not that good for sample sizes L
through 6, it does start improving for sample sizes 7 through 9. 1In
this range it appears to be very close to the bi-pivot-t. Their
differences in QOZ~ECIL tetra-efficiency are 1.9%, L4L.7%, and
2.6%, the first two in favor of the biweight-t. It is up to the
user who prefers tri-efficiency whether these small numbers warrant
the extra effort required to compute the biweipht-t atatictic.

In the range of swmple sices 10 Lhrough 0 the biwcighl-L slu-
tistic shows itself to be the clear winner over the hinge-"t"'s by
about 2C%. However, it must be emphasized that, considering how
easy it is to use the hinge-"t"'s, it is surprising how well the,
perform relative to the biweight-t. When confidence intervals are
reguired quickly it would not be unreasonable to use the bi-pivot-t
for sample sizes as large as 20.

It should be noted that while the three criteria {(90%-CIL,

90%-ECIL, and ECIL) give different quantitative results, i.e.,
different tetra-efficiencies, they give similar qualitative results:
the hinge="t"'s do well for sample sizes <10 and the biweipht-~t

does the best for sample sizses 210,

4.8 ¢ ummurizing the Results

In this section we will often summarize results which omit the
Slash as a distribution to be considefed. The tri-efficiencies of
the previous section excluded the Slash in two ways: from determin-

ing the conservative percent point and from determining the efficiency.
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In this section we will distinguish between these two ways. When
Slash is excluded from determining the conservative percent point we
will refer to this situation as one of tri-confidence. When Slash

is excluded from determining efficiencies we will refer to the result-
ing numbers as tri-efficiencies. ‘Similarly, when Slash is included
we will refer to tetra-confidence situations and tetra-efficiencies
respectively. These distinctions will aid in summarizing the results
of the previous sections.

In Table 6 we present summary statistics for the 90%-ECIL
criterion. These statistics are the means and medians of the tetra-
efficiencies for the "t"-statistics across a variety of sample sizes.
Note that the pivot-t and bi-pivot-t are used here instead of the
hinge(-)-t and hinge-t. The reason for this is that there is a
clear difference between the pivot-t and bi-pivot-t as can be seen
in Tables 2 through 5. These tables also show the difference between
the hinge(-)-t and hinge-t not to be as clear cut.

rrom Table 6 the clear winner is the biweight-t which main-
tains a tetra-efficiency of about 85% for most of the ranges of
sample sizes. Coming in second and third are the bi-pivot-t and
pivot-t respectively. The bi-pivot-t is about 15% less tetra-
efficient than the biweight-t for most of the ranges examined. It
is up to the user to decide whether the extra effort in computing the
biweight-t statistic is worth the 15% gain in efficiency over the

simple bi-pivot-t statistic.

Similarly, the pivot-t statistic is only about 6% less
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tetra-efficient than the bi-pivot-t statistic. Again, it is up to
the user to decide if this modest gain in tetra-efficiency gotten by
using the simple bi-pivot-t is worth it instead of using the even
simpler pivot-t.

The above remarks can be seen more clearly if we examine the
stem-and-leaf diagrams presented in Table 7. This shows clearly the
order of the "t"-statistics in termn of performance for sample sizes
between 4 and 20 according to the 90%-ECIL criterion. Biweight-t
is the best, followed by bi-pivot-t, closely followed by pivot-t,
with Median-t a fair fourth pluce, and Student's t  the worst.

Table 8 gives results when Slash is dropped from consideration
either in determining the conservative percent points (tri-confidence)
and/or determining efficiency (tri-efficiency). Comparing these re-
sults with those of Table 6 we note the great improvement.of Student's
t when Slash is not used to help determine efficiency. The pivot-t
and bi-pivot-t improve (relatively) slighély in tri-confidence situ-
ations. The bi-pivot-t improves (relatively) a bit more, though,
when tri-efficiencies are used.

We also note that for the larger sample sizes Student's t has
a tri-efficiency of about 72%. This puts it in third place with
respect to tri-efficiency/tri-confidence behind the biweight-t and
bi-pivot-t. If we consider tri-efficiencies for tetra-confidence
situations then Student's t ties for second place with the bi-
pivot-t.

Table 9 compares tri-efficiencies and tetra-efficiencies for
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sample sizes 4 through 7. (Note that no distinction need be made
between tri-confidence and tetra-confidence since Slash does not con-
trol for conservatism for any of the "t"-statistic: in this rogee.)
Student's t is the clear winner with the bi-pivot-t not too far
behind. As with the tetra-efficiencies, pivot-t is in third place
behind the bi-pivot-t. Now, though, the differeneces are a bLit bip-
ger between these latter two: about a 30% difference in tri-
efficiency. Thus, using teh bi-pivot-t over the pivot-t gives a
gain of about 17% 1in tetra-efficiency, but yields a gain of 30%
in tri-efficiency. These large differences should warrant the use
of the slightly more complicated bi-pivot-t statistic.

So it seems that exclusion of the Slash distribution only really
matters to Student's t and the bi-pivot-t. Bi-pivot-t is still
very good even when Slash is included, but Student's t does poorly
(relatively) when tetra-efficiencies are examined. Also, as stated
before, in the determination of the conservative percent points, it
does not matter for small sample sizes whether or not Slash is
included.

ln conclusion we would recommend using the bi-pivot-t for the
small sample sizes since it makes a good showing in terms of both
tetra- and tri-cfficicency. We recommend using the biweipht-t  for
sample size = U to 7, if one does not mind the extra work and
believes the data may be highly contaminated. We recommend the use

of Student's t for such small sample sizes if one is very confi-

dent that the data are not extremely stretch-tailed.
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5. PIVOT-t AND BI-PIVOT-t TABLES

Table 10 pives conservative percent points for the pivot-t and
bi-pivot-t for various p-values. This table uses results from one
of the four distributions to compute the conservative value. If one
wishes to omit Slash as a distribution to be considered the corre-

sponding conservative values are given in Table 11.

Appendix

The numbers used Lo compute the tetru-efficicncics of Scetion b.6
were the B%-ECIL and p%-CIL. These numbers wer not given because
they are too numerous. However, these numbers are given along with
standard error estimates in Horn (1981). The standard error esti-
mates were computed using half-sampling techniques (Tukey 1980).

Also, the swindle used in computing the percent points (Simon
1975) given in the last section provides standard error estimates.
However, these standard error estimates are for the tail prohability,
not the eritical value (since Lhis was compubled using o biscction).
Estimation of the standard error of the critical value is discussed
in Horﬁ (1981). The standard error estimates of the critical values
were practically always Tess Lhan 3% of the eritienl value.  The
exception occured for the pivot-t with sample sizes = 5 and 6 where
the standard error estimate of the critical value was equal to 20%
of the critical value.

The random numbers used were generated on a PDP-11. A double

shuffler was used in the algorithm.




] Table 1. Coefficients of Variation of "Hinge'-spreads (Divided by
L the minimum in each row).
! "Hinge"-spread
E ss hinge(--) hinge(-) hinge hinge(+) Distribution
; 1.00000 1.00382 1.51976 1.51976 Gaussian
, 5 1.13669 1.00000 1.19620 1.19620 Slacu
1.42480 1.18698 1.00000 1.00000 Slasq
4 2,20960 1.99014 1.00000 1.00000 Slash
1.00961 1.00000 1.39L4k42 1.48581 Gaussian
6 1.13119 1.00000 1.15038 1.17238 Slacu
1 1.43526 1.18k4kLo 1.01L455 1.00000 Slasq
4.69311 4.35990 1.08413 1.00000 Slash
1.00000 1.32659 1.38094 2.03156 Gaussian
T 1.00000 1.02637 1.027k0 1.45203 Slacu
2.21717 1.06927 1.00000 1.291k6 Slasq
L,22831 1.51L15 1.2571L 1.00000 Slash
1.00000 1.2Lkh72 1.25355 1.61735 Gaussian 1
8 1.24378 1.01k59 1.00000 1.290L48 Slacu
1.60629 1.05921 1.00000 1.17550 Slasq
6.33126 1.49976 1.2k268 1.00000 Slash
1.00000 1.00609 1.29LLs5 1.37583 Gaussian
9 1.01088 1.00000 1.23282 1.31778 Slacu
1.0881k 1.00000 1.16169 1.18185 Slasq
4 2.60375 1.98L06é 1.13425 1.00000 Slash
1.00000 1.01290 1.24138 1.30L474 Gaussian
10 1.02971 1.00000 1.19578 1.19353 Slacu
1.11580 1.00000 1.07064 1.05630 Slasq
, 2.211k2 1.73319 1.11052 1.00000 Slash
]
1.00000 1.11158 1.11814 1.26797 Gaussian
20 1.00000 1.09747 1.07L73 1.17880 Slacu
1.00000 1.05074 1.05245 1.16787 Slasq
1.15923 1.08967 1.00000 1.00068 Slash




E%-ECIL Relative Tetra-efficiencies Distributions Where These Occur

Table 2.

(following numbers).

Slasq, h = Slash
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Table 2 (continued)
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E%-CIL Reletive Tetra-efficiencies Distributions Where These Occur.

Table 3.

Slash (following numbers)
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Table 3 (continued)
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Teble 3 (continued)
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Table 3 (continued)
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3 %-ECIL Relative Tri-efficiencies Distributions Where These Occur
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B%-CIL Relative Tri-Efficiencies Distributions Where these Occur
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Teble 6. Summary of 90%-ECIL Relative Tetra-efficiencies:
(for 95% tetra-confidence)

Range of Sample Size
L-20 6-20 8-20 10~-20

t-statistic mean median mean median mean median mean-median

Student's t 23 15 16 13 1k 13 12 13
Median-t 51 S5 53 55 55 56 56 56
Biveight-t 79 87 85 90 88 90 89 90
Pivot-t 64 68 66 68 66 68 67 66

Bi-pivot-t T2 T2 69 T1 T2 72 71 72




Table 7. Stem-and-Leaf Diagrams of 90%-ECIL Relative Tetra-
efficiencies for Sample Sizes 7-20:

(95% tetra-confidence)

"t"_statistic

Student's t Median-t Pivot-t Bi-pivot-t Biweight-t
0 899
1l 01333557
2 954
3
L 15
5 12455667999 T
6 0 3446788889 6789
T 003 111233366 o7
8 0 1567
9 00011123

(Values at sample size = 7 are underlined.)
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Table 9.

4 through T*.

Summary of Relative Efficiencies

for Sample Sizes

Tri-efficiency Tetra-efficiency
t-statistic mean median mean median
Student's t 98 98 55 55

Median~t Lo L4 L0 L
Biweight~t 52 53 52 53
Pivot-t 63 63 58 63
Bi-pivot-t 89 95 75 80

Distinguishing between tri- and tetra-confidence is unnecessary since

Slash does not contorl for the conservative percent point for sample

sizes L through 7.
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Table 10. Conservative One-tailed Percent Points, t_: P("t" Stp) =p.
(Distributions used = Gaussian, Slacu, Slasq, Slash)
Pivot-t
p=
n .75 .90 .95 .975 .990 .995 .999
4 .320 Ch77 .553 .738 1.0ko0 1.331 2.312
5 .387 .869 .370 2.094 3.715 5.805 16.500
6 .298 .531 .759 1.035 1.505 1.962 3.557
7 .262 RICSE .550 .720 .978 1.211 1.985
8 .223 .393 L4169 .56k LTha .890 1.293
9 .257 .48k .688 .915 1.265 1.575 2,447
10 .216 .L0o0o .523 .668 .878 1.051 1.584
11 . 200 .363 452 .545 .71k .859 1.281
12 .193 cinn .b23 .183 .593 .697 .968
13 .208 .389 LL4oT .608 .792 .9ks 1.343
1k .189 .348 37 .525 .661 LTT6 1.075
15 172 .318 .399 .L66 .586 .685 .9ks
16 .16h .299 .37k .35 .507 .591 .822
17 .176 .331 -5t .502 .637 .Thh 1.009
18 .161 .300 .380 L5l .555 .650 .90L
19 .156 .288 .361 Lh23 .502 .5T5 .T61
20 .1h43 . 266 Jhy7 .397 L6k .519 .678
Bi-pivot~L
p=
n .15 .90 .95 975 .990 .995 999
4 .372 .575 .831 1.127 1.61k 2.079
5 .301 .L66 .550 ok .968 1.190
6 .288 k2 .1486 .536 .699 .836
7 .308 .533 .Th5 .985 1.355 1.686
8 .2kl .432 .5L48 LT0T .939 1.133
9 .220 .388 L4666 .571 .Tho .878
10 .200 .354 428 .L80 .593 .690
11 .219 .Lok .513 .658 .867 1.0L7
12 .203 .367 .bs6 .5ko .694 .820
13 .182 .333 .k1s5 183 .586 .685
1k 176 .316 .389 .hhs .516 .599
15 .184 .343 43y .531 BT7 197
16 171 .315 .397 JA6T 575 .672
17 .160 .294 .370 L3k .508 .58k
18 .150 .275 .34k .399 .L65 .527
19 .163 .303 .383 .53 .558 .6h1
20 .1L48 .278 .354 .419 .99 .5T1




Table 11l.

Conservative One-tailed Percent Points, t

(Distributions used - Gaussian, Slacu, Slasq)

: P("t" 5t ) =p.
p p P

Pivot-t
p -
n .15 .90 .95 975 .990 .995 .999
b .238 .L428 .553 .738 .0bo 1.331 2.312
5 .382 .869 .370 2.094 .T15 5.805 6.500
6 .263 .531 .T59 1.035 .505 1.962 3.557
7 .211 .07 .550 .T20 .978 1.211 1.985
8 .18% .350 L4583 .56k .Th1 .890 1.293
9 .232 LL48L .688 .915 .265 1.575 2.447
10 .195 .38k .523 .668 .878 1.051 1.584
11 L1638 . 326 .h30 .545 LT1h .859 1.281
12 .152 elele .3 RIS .503 607 .968
13 .184 .363 .L86 .608 .792 .945 1.343
1k .165 .321 L2y .525 .661 s 1.075
15 .151 .291 .379 65 .586 .685 .9L45
16 .136 .262 .3 Jh33 .507 .591 .822
17 .157 .308 Lot .502 .637 LTLL 1.009
18 .1h3 .278 . 30M R L5995 LGhU .90k
19 .133 .256 .333 L4095 .502 .575 .761
20 .124 .237 .307 .371 .ush .519 .678
Bi-pivot-t
p =
n .T5 .90 .95 975 .9%90 .99% .999
N .303 .575 .831 1.127 614 2.079 3.6L42
5 .229 .hos .550 LT1T .968 1.190 1.856
6 .19k .355 Lhhs .536 .699 .836 1.219
7 .262 .526 .Ths .986 .355 1.686 2.706
8 .212 Lh13 .548 .T07 .939 1.133 1.650
9 77 .3ko .L450 .571 .TLO .818 1.279
10 .158 L300 . 388 o .503 .690 .939
11 .194 .381 .513 .658 .867 1.047 1.571
12 .170 .331 L1435 .sko .69k .820 1.152
13 .150 .290 .380 W66 .586 .68y .935%
14 .138 PGl L343 s .516 .599 . 805
15 .167 .32h 436 .531 67T 197 1.122
16 .1k8 .287 .376 .59 .575 672 .9kh2
17 .136 .262 .30 Lk .508 .50k .768
18 .126 2h2 .315 .381 .L6s5 .527 .695
19 L1Lk .278 .364 .l .558 .6h1 .862
20 .132 .255 .332 L1403 .hog .5T1 LThT
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Figure A. Underlying Densities of Interval Lengths
for Two Confidence Procedures: Cl’ C2

90%-ECIL(C1) < 90%-ECIL(C2)
90%-CIL(C1) > 90%-CIL(C2)
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